Using instanton Floer theory, extending methods due to Froyshov, we determine the definite lattices that arise from smooth 4-manifolds bounded by certain homology 3-spheres. For example, we show that for +1 surgery on the (2,5) torus knot, the only non-diagonal lattices that can occur are E8 and the indecomposable unimodular definite lattice of rank 12, up to diagonal summands. We require that our 4-manifolds have no 2-torsion in their homology.