Single photon detection with SiPMs irradiated up to 10$^{14}$ cm$^{-2}$ 1-MeV-equivalent neutron fluence


الملخص بالإنكليزية

Silicon photomultipliers (SiPM) are solid state light detectors with sensitivity to single photons. Their use in high energy physics experiments, and in particular in ring imaging Cherenkov (RICH) detectors, is hindered by their poor tolerance to radiation. At room temperature the large increase in dark count rate makes single photon detection practically impossible already at 10$^{11}$ cm$^{-2}$ 1-MeV-equivalent neutron fluence. The neutron fluences foreseen by many subdetectors to be operated at the high luminosity LHC range up to 10$^{14}$ cm$^{-2}$ 1-MeV-equivalent. In this paper we present the effects of such high neutron fluences on Hamamatsu and SensL SiPMs of different cell size. The advantage of annealing at high temperature (up to 175 $^{circ}$C) is discussed. We demonstrate that, after annealing, operation at the single photon level with a SiPM irradiated up to 10$^{14}$ cm$^{-2}$ 1-MeV-equivalent neutron fluence is possible at cryogenic temperature (77 K) with a dark count rate below 1~kHz.

تحميل البحث