Nowhere-differentiability of the solution map of 2D Euler equations on bounded spatial domain


الملخص بالإنكليزية

We consider the incompressible 2D Euler equations on bounded spatial domain $S$, and study the solution map on the Sobolev spaces $H^k(S)$ ($k > 2$). Through an elaborate geometric construction, we show that for any $T >0$, the time $T$ solution map $u_0 mapsto u(T)$ is nowhere locally uniformly continuous and nowhere Frechet differentiable.

تحميل البحث