We complement our previous computation of the Chow-Witt rings of classifying spaces of special linear groups by an analogous computation for the general linear groups. This case involves discussion of non-trivial dualities. The computation proceeds along the lines of the classical computation of the integral cohomology of ${rm BO}(n)$ with local coefficients, as done by Cadek. The computations of Chow-Witt rings of classifying spaces of ${rm GL}_n$ are then used to compute the Chow-Witt rings of the finite Grassmannians. As before, the formulas are close parallels of the formulas describing integral cohomology rings of real Grassmannians.