Motivated by the general question of existence of open A1-cylinders in higher dimensional pro-jective varieties, we consider the case of Mori Fiber Spaces of relative dimension three, whose general closed fibers are isomorphic to the quintic del Pezzo threefold V5 , the smooth Fano threefold of index two and degree five. We show that the total spaces of these Mori Fiber Spaces always contain relative A2-cylinders, and we characterize those admitting relative A3-cylinders in terms of the existence of certain special lines in their generic fibers.