We propose a Discontinuous Galerkin method for the Poisson equation on polygonal tessellations in two dimensions, stabilized by penalizing, locally in each element $K$, a residual term involving the fluxes, measured in the norm of the dual of $H^1(K)$. The scalar product corresponding to such a norm is numerically realized via the introduction of a (minimal) auxiliary space inspired by the Virtual Element Method. Stability and optimal error estimates in the broken $H^1$ norm are proven under a weak shape regularity assumption allowing the presence of very small edges. The results of numerical tests confirm the theoretical estimates.