Atomic decomposition and Weak Factorization for Bergman-Orlicz spaces


الملخص بالإنكليزية

For $mathbb B^n$ the unit ball of $mathbb C^n$, we consider Bergman-Orlicz spaces of holomorphic functions in $L^Phi_alpha(mathbb B^n)$, which are generalizations of classical Bergman spaces. We obtain atomic decomposition for functions in the Bergman-Orlicz space $mathcal A^Phi_alpha (mathbb B^n)$ where $Phi$ is either convex or concave growth function. We then prove weak factorization theorems involving the Bloch space and a Bergman-Orlicz space and also weak factorization theorems involving two Bergman-Orlicz spaces.

تحميل البحث