Denseness of adapted processes among causal couplings


الملخص بالإنكليزية

It is well known that any pair of random variables $(X,Y)$ with values in Polish spaces, provided that $Y$ is nonatomic, can be approximated in joint law by random variables of the form $(X,Y)$ where $X$ is $Y$-measurable and $X stackrel{d}{=} X$. This article surveys and extends some recent dynamic analogues of this result. For example, if $X$ and $Y$ are stochastic processes in discrete or continuous time, then, under a nonatomic assumption as well as a necessary and sufficient causality (or compatibility) condition, one can approximate $(X,Y)$ in law in path space by processes of the form $(X,Y)$, where $X$ is adapted to the filtration generated by $Y$. In addition, in finite discrete time, we can take $X$ to have the same law as $X$. A similar approximation is valid for randomized stopping times, without the first marginal fixed. Natural applications include relaxations of (mean field) stochastic control and causal optimal transport problems as well as new characterizations of the immersion property for progressively enlarged filtrations.

تحميل البحث