In phylogenetic studies, biologists often wish to estimate the ancestral discrete character state at an interior vertex $v$ of an evolutionary tree $T$ from the states that are observed at the leaves of the tree. A simple and fast estimation method --- maximum parsimony --- takes the ancestral state at $v$ to be any state that minimises the number of state changes in $T$ required to explain its evolution on $T$. In this paper, we investigate the reconstruction accuracy of this estimation method further, under a simple symmetric model of state change, and obtain a number of new results, both for 2-state characters, and $r$--state characters ($r>2$). Our results rely on establishing new identities and inequalities, based on a coupling argument that involves a simpler `coin toss approach to ancestral state reconstruction.