Stress anisotropy in shear-jammed packings of frictionless disks


الملخص بالإنكليزية

We perform computational studies of repulsive, frictionless disks to investigate the development of stress anisotropy in mechanically stable (MS) packings. We focus on two protocols for generating MS packings: 1) isotropic compression and 2) applied simple or pure shear strain $gamma$ at fixed packing fraction $phi$. MS packings of frictionless disks occur as geometric families (i.e. parabolic segments with positive curvature) in the $phi$-$gamma$ plane. MS packings from protocol 1 populate parabolic segments with both signs of the slope, $dphi/dgamma >0$ and $dphi/dgamma <0$. In contrast, MS packings from protocol 2 populate segments with $dphi/dgamma <0$ only. For both simple and pure shear, we derive a relationship between the stress anisotropy and dilatancy $dphi/dgamma$ obeyed by MS packings along geometrical families. We show that for MS packings prepared using isotropic compression, the stress anisotropy distribution is Gaussian centered at zero with a standard deviation that decreases with increasing system size. For shear jammed MS packings, the stress anisotropy distribution is a convolution of Weibull distributions that depend on strain, which has a nonzero average and standard deviation in the large-system limit. We also develop a framework to calculate the stress anisotropy distribution for packings generated via protocol 2 in terms of the stress anisotropy distribution for packings generated via protocol 1. These results emphasize that for repulsive frictionless disks, different packing-generation protocols give rise to different MS packing probabilities, which lead to differences in macroscopic properties of MS packings.

تحميل البحث