Direct-gap materials hold promises for excitonic insulator. In contrast to indirect-gap materials, here the difficulty to distinguish from a Peierls charge density wave is circumvented. However, direct-gap materials still suffer from the divergence of polarizability when the band gap approaches zero, leading to diminishing exciton binding energy. We propose that one can decouple the exciton binding energy from the band gap in materials where band-edge states have the same parity. First-principles calculations of two-dimensional GaAs and experimentally mechanically exfoliated single-layer TiS 3 lend solid supports to the new principle.