Neutron-antineutron oscillations are considered in the light of recently proposed particle models, which claim to resolve the neutron lifetime anomaly, indicating the existence of baryon violating $Delta B=1$ interactions. Possible constraints are derived coming from the non-observation of neutron-antineutron oscillations, which can take place if the dark matter particle produced in neutron decay happens to be a Majorana fermion. It is shown that this can be realised in a simple MSSM extention where only the baryon number violating term $u^cd^cd^c$ is included whilst all other R-parity violating terms are prevented to avoid rapid proton decay. It is demostrated how this scenario can be implemented in a string motivated GUT broken to MSSM by fluxes.