Magnetic field-induced resistivity upturn and exceptional magneto-resistance in Weyl semimetal TaSb2


الملخص بالإنكليزية

We study magneto-transport properties in single crystals of TaSb_2, which is a recently discovered topological semimetal. In the presence of magnetic field, the electrical resistivity shows onset of insulating behaviour followed by plateau at low temperature. Such resistivity plateau is generally assigned to topological surface states. TaSb2 exhibits extremely high magneto-resistance with non-saturating field dependence. We find that aspects of extremely large magneto resistance and resistivity plateau are well accounted by classical Kohler scaling. Unambiguous evidence for anomalous Chiral transport is provided with observation of negative longitudinal magneto-resistance. Shubnikov-de Haas oscillations reveal two dominating frequencies, 201 T and 455 T. These aspects categorize TaSb2 as a Type-II Weyl semimetal. At low temperature, the field dependence of Hall resistivity shows non-linear behaviour that indicates the presence of two types of charge carriers in consonance with reported electronic band structure. Analysis of Hall resistivity imply very high electron mobilities.

تحميل البحث