Electrical conductivity of Hot and Dense QCD matter at RHIC BES energies: A Color String Percolation Approach


الملخص بالإنكليزية

Recently, transport coefficients viz. shear viscosity, electrical conductivity etc. of strongly interacting matter produced in heavy-ion collisions have drawn considerable interest. We study the normalised electrical conductivity ($sigma_{rm el}$/T) of hot QCD matter as a function of temperature (T) using the Color String Percolation Model (CSPM). We also study the temperature dependence of shear viscosity and its ratio with electrical conductivity for the QCD matter. We compare CSPM estimations with various existing results and lattice Quantum Chromodynamics (lQCD) predictions with (2+1) dynamical flavours. We find that $sigma_{rm el}$/T in CSPM has a very weak dependence on the temperature. We compare CSPM results with those obtained in Boltzmann Approach to Multi-Parton Scatterings (BAMPS) model. A good agreement is found between CSPM results and predictions of BAMPS with fixed strong coupling constant.

تحميل البحث