Twistor spaces for supersingular K3 surfaces


الملخص بالإنكليزية

We develop a theory of twistor spaces for supersingular K3 surfaces, extending the analogy between supersingular K3 surfaces and complex analytic K3 surfaces. Our twistor spaces are obtained as relative moduli spaces of twisted sheaves on universal gerbes associated to the Brauer groups of supersingular K3 surfaces. In rank 0, this is a geometric incarnation of the Artin-Tate isomorphism. Twistor spaces give rise to curves in moduli spaces of twisted supersingular K3 surfaces, analogous to the analytic moduli space of marked K3 surfaces. We describe a theory of crystals for twisted supersingular K3 surfaces and a twisted period morphism from the moduli space of twisted supersingular K3 surfaces to this space of crystals. As applications of this theory, we give a new proof of the Ogus-Torelli theorem modeled on Verbitskys proof in the complex analytic setting and a new proof of the result of Rudakov-Shafarevich that supersingular K3 surfaces have potentially good reduction. These proofs work in characteristic 3, filling in the last remaining gaps in the theory. As a further application, we show that each component of the supersingular locus in each moduli space of polarized K3 surfaces is unirational.

تحميل البحث