Confinement- and strain-induced enhancement of thermoelectric properties in LaNiO$_3$/LaAlO$_3(001)$ superlattices


الملخص بالإنكليزية

By combining ab initio simulations including an on-site Coulomb repulsion term and Boltzmann theory, we explore the thermoelectric properties of (LaNiO$_3$)$_n$/(LaAlO$_3$)$_n$(001) superlattices ($n=1,3$) and identify a strong dependence on confinement, spacer thickness, and epitaxial strain. While the system with $n=3$ shows modest values of the Seebeck coefficient and power factor, the simultaneous reduction of the LaNiO$_3$ region and the LaAlO$_3$ spacer thickness to single layers results in a strong enhancement, in particular of the in-plane values. This effect can be further tuned by using epitaxial strain as control parameter: Under tensile strain corresponding to the lateral lattice constant of SrTiO$_3$ we predict in- and cross-plane Seebeck coefficients of $pm 600$ $mu$V/K and an in-plane power factor of $11$ $mu$W/K$^2$cm for an estimated relaxation time of $tau = 4$ fs around room temperature. These values are comparable to some of the best performing oxide systems such as La-doped SrTiO$_3$ or layered cobaltates and are associated with the opening of a small gap ($0.29$ eV) induced by the concomitant effect of octahedral tilting and Ni-site disproportionation. This establishes oxide superlattices at the verge of a metal-to-insulator transition driven by confinement and strain as promising candidates for thermoelectric materials.

تحميل البحث