Fault-tolerant quantum error correction for Steanes seven-qubit color code with few or no extra qubits


الملخص بالإنكليزية

Steanes seven-qubit quantum code is a natural choice for fault-tolerance experiments because it is small and just two extra qubits are enough to correct errors. However, the two-qubit error-correction technique, known as flagged syndrome extraction, works slowly, measuring only one syndrome at a time. This is a disadvantage in experiments with high qubit rest error rates. We extend the technique to extract multiple syndromes at once, without needing more qubits. Qubits for different syndromes can flag errors in each other. This gives equally fast and more qubit-efficient alternatives to Steanes error-correction method, and also conforms to planar geometry constraints. We further show that Steanes code and some others can be error-corrected with no extra qubits, provided there are at least two code blocks. The rough idea is that two seven-qubit codewords can be temporarily joined into a twelve-qubit code, freeing two qubits for flagged syndrome measurement.

تحميل البحث