Quantum state redistribution with local coherence


الملخص بالإنكليزية

Quantum entanglement and coherence are two fundamental resources for quantum information processing. Recent results clearly demonstrate their relevance in quantum technological tasks, including quantum communication and quantum algorithms. In this Letter we study the role of quantum coherence for quantum state redistribution, a fundamental task where two parties aim to relocate a quantum particle by using a limited amount of quantum communication and shared entanglement. We provide general bounds for the resource rates required for this process, and show that these bounds are tight under additional reasonable constraints, including the situation where the receiving party cannot use local coherence. While entanglement cannot be directly converted into local coherence in our setting, we show that entanglement is still useful for local coherence creation if an additional quantum channel is provided, and the optimal protocol for local coherence creation for any given amount of quantum communication and shared entanglement is presented. We also discuss possible extensions of our methods to other scenarios where the receiving party is limited by local constraints, including theories of thermodynamics and asymmetry.

تحميل البحث