Minimal models for monomial algebras


الملخص بالإنكليزية

Using combinatorics of chains going back to works of Anick, Green, Happel and Zacharia, we give, for any monomial algebra $A$, an explicit description of its minimal model. This also provides us with formulas for a canonical $A_infty$-structure on the Ext-algebra of the trivial $A$-module. We do this by exploiting the combinatorics of chains going back to works of Anick, Green, Happel and Zacharia, and the algebraic discrete Morse theory of Jollenbeck, Welker and Skoldberg. We then show how this result can be used to obtain models for algebras with a chosen Grobner basis, and briefly outline how to compute some classical homological invariants with it.

تحميل البحث