A Cryptographic Test of Quantumness and Certifiable Randomness from a Single Quantum Device


الملخص بالإنكليزية

We consider a new model for the testing of untrusted quantum devices, consisting of a single polynomial-time bounded quantum device interacting with a classical polynomial-time verifier. In this model we propose solutions to two tasks - a protocol for efficient classical verification that the untrusted device is truly quantum, and a protocol for producing certifiable randomness from a single untrusted quantum device. Our solution relies on the existence of a new cryptographic primitive for constraining the power of an untrusted quantum device: post-quantum secure trapdoor claw-free functions which must satisfy an adaptive hardcore bit property. We show how to construct this primitive based on the hardness of the learning with errors (LWE) problem.

تحميل البحث