Estimates of the baryon densities attainable in heavy-ion collisions from the beam energy scan program


الملخص بالإنكليزية

The baryon and energy densities attained in fragmentation regions in central Au+Au collisions in the energy range of the Beam Energy Scan (BES) program at the Relativistic Heavy-Ion Collider (RHIC) are estimated within the model of the three-fluid dynamics. It is shown that a considerable part of the baryon charge is stopped in the central fireball. Even at 39 GeV, approximately 70% of the total baryon charge turns out to be stopped. The fraction of this stopped baryon charge decreases with collision energy rise, from 100% at 7.7 GeV to $sim$40% at 62 GeV. The highest initial baryon densities of the thermalized matter, $n_B/n_0 approx$ 10, are reached in the central region of colliding nuclei at $sqrt{s_{NN}}=$ 20--40 GeV. These highest densities develop up to quite moderate freeze-out baryon densities at the midrapidity because the matter of the central fireball is pushed out to fragmentation regions by one-dimensional expansion. Therefore, consequences of these high initial baryon densities can be observed only in the fragmentation regions of colliding nuclei in AFTER@LHC experiments in the fixed-target mode.

تحميل البحث