Weakly Aggregative Modal Logic (WAML) is a collection of disguised polyadic modal logics with n-ary modalities whose arguments are all the same. WAML has some interesting applications on epistemic logic and logic of games, so we study some basic model theoretical aspects of WAML in this paper. Specifically, we give a van Benthem-Rosen characterization theorem of WAML based on an intuitive notion of bisimulation and show that each basic WAML system K_n lacks Craig Interpolation.