We introduce the notions of categorical systoles and categorical volumes of Bridgeland stability conditions on triangulated categories. We prove that for any projective K3 surface, there exists a constant C depending only on the rank and discriminant of its Picard group, such that $$mathrm{sys}(sigma)^2leq Ccdotmathrm{vol}(sigma)$$ holds for any stability condition on the derived category of coherent sheaves on the K3 surface. This is an algebro-geometric generalization of a classical systolic inequality on two-tori. We also discuss applications of this inequality in symplectic geometry.