We establish an equidistribution result for Ruelle resonant states on compact locally symmetric spaces of rank one. More precisely, we prove that among the first band Ruelle resonances there is a density one subsequence such that the respective products of resonant and co-resonant states converge weakly to the Liouville measure. We prove this result by establishing an explicit quantum-classical correspondence between eigenspaces of the scalar Laplacian and the resonant states of the first band of Ruelle resonances which also leads to a new description of Patterson-Sullivan distributions.