On the Galois group over Q of a truncated binomial expansion


الملخص بالإنكليزية

For positive integers $n$, the truncated binomial expansions of $(1+x)^n$ which consist of all the terms of degree $le r$ where $1 le r le n-2$ appear always to be irreducible. For fixed $r$ and $n$ sufficiently large, this is known to be the case. We show here that for a fixed positive integer $r e 6$ and $n$ sufficiently large, the Galois group of such a polynomial over the rationals is the symmetric group $S_{r}$. For $r = 6$, we show the number of exceptional $n le N$ for which the Galois group of this polynomial is not $S_r$ is at most $O(log N)$.

تحميل البحث