Topological invariants in dissipative extensions of the Su-Schrieffer-Heeger model


الملخص بالإنكليزية

We investigate dissipative extensions of the Su-Schrieffer-Heeger model with regard to different approaches of modeling dissipation. In doing so, we use two distinct frameworks to describe the gain and loss of particles, one uses Lindblad operators within the scope of Lindblad master equations, the other uses complex potentials as an effective description of dissipation. The reservoirs are chosen in such a way that the non-Hermitian complex potentials are $mathcal{PT}$-symmetric. From the effective theory we extract a state which has similar properties as the non-equilibrium steady state following from Lindblad master equations with respect to lattice site occupation. We find considerable similarities in the spectra of the effective Hamiltonian and the corresponding Liouvillean. Further, we generalize the concept of the Zak phase to the dissipative scenario in terms of the Lindblad description and relate it to the topological phases of the underlying Hermitian Hamiltonian.

تحميل البحث