Topological excitations in the ferromagnetic Kitaev-Heisenberg model


الملخص بالإنكليزية

With the advancement in synthesizing and analyzing Kitaev materials, the Kitaev-Heisenberg model on the honeycomb lattice has attracted a lot of attention in the last few years. Several variations, which include additional anisotropic interactions as well as response to external magnetic field, have been investigated and many exotic ordered phases have been discussed. On the other hand, quantum spin systems are proving to be a fertile ground to realize and study bosonic analogues of fermionic topological states of matter. Using the spin-wave theory we show that the ferromagnetic phase of the extended Kitaev-Heisenberg model hosts topological excitations. Along the zig-zag edge of the honeycomb lattice we find chiral edge states, which are protected by a non-zero Chern number topological invariant. We discuss two different scenarios for the direction of the spin polarization namely $[001]$ and $[111]$, which are motivated by possible directions of applied field. Dynamic structure factor, accessible in scattering experiments, is shown to exhibit signatures of these topological edge excitations. Furthermore, we show that in case of spin polarization in $[001]$ direction, a topological phase transition occurs once the Kitaev couplings are made anisotropic.

تحميل البحث