Structural and Electronic Properties of Graphdiyne Carbon Nanotubes from Large-Scale DFT Calculations


الملخص بالإنكليزية

Using large-scale DFT calculations, we have investigated the structural and electronic properties of both armchair and zigzag graphdiyne nanotubes as a function of size. To provide insight in these properties, we present new detailed calculations of the structural relaxation energy, effective electron/hole mass, and size-scaling of the bandgap as a function of size and chirality using accurate screened-exchange DFT calculations. These calculations provide a systematic evaluation of the structural and electronic properties of the largest graphdiyne nanotubes to date - up to 1,296 atoms and 23,328 basis functions. Our calculations find that zigzag graphdiyne nanotubes (GDNTs) are structurally more stable compared to armchair GDNTs of the same size. Furthermore, these large-scale calculations allow us to present simple analytical formulae to guide future experimental efforts for estimating the fundamental bandgaps of these unique nanotubes as a function of chirality and diameter. While the bandgaps for both the armchair and zigzag GDNTs can be tuned as a function of size, the conductivity in each of these two different chiralities is markedly different. Zigzag GDNTs have wider valence and conduction bands and are expected to have a higher electron- and hole-mobility than their armchair counterparts.

تحميل البحث