We use scanning optical magnetometry to study the broadband frequency spectra of spontaneous magnetization fluctuations, or magnetization noise, in an archetypal ferromagnetic film that can be smoothly tuned through a spin reorientation transition (SRT). The SRT is achieved by laterally varying the magnetic anisotropy across an ultrathin Pt/Co/Pt trilayer, from the perpendicular to in-plane direction, via graded Ar$^+$ irradiation. In regions exhibiting perpendicular anisotropy, the power spectrum of the magnetization noise, $S( u)$, exhibits a remarkably robust $ u^{-3/2}$ power law over frequencies $ u$ from 1~kHz to 1~MHz. As the SRT region is traversed, however, $S( u)$ spectra develop a steadily-increasing critical frequency, $ u_0$, below which the noise power is spectrally flat, indicating an evolving low-frequency cutoff for magnetization fluctuations. The magnetization noise depends strongly on applied in- and out-of-plane magnetic fields, revealing local anisotropies and also a field-induced emergence of fluctuations in otherwise stable ferromagnetic films. Finally, we demonstrate that higher-order correlators can be computed from the noise. These results highlight broadband spectroscopy of thermodynamic fluctuations as a powerful tool to characterize the interplay between thermal and magnetic energy scales, and as a means of characterizing phase transitions in ferromagnets.