We investigate the memory effects associated with the kicks of particles. Recently, the equivalence between the memory effect and soft theorem has been established. By computing the memory effect from the radiation solutions, we explicitly confirm that, in addition to the leading piece, the subleading and subsubleading soft theorems are equivalent to the subleading and subsubleading memory effects, respectively. It is known that the memory effects can be probed by the displacements or kicks of the test particles. We point out that the these memory effects are also probed by the permanent change of the direction of the spin. We also show that the axion memory effect, recently proposed by the current authors, can be detected as the change of the spin of the test particle. We discuss that if we consider the magnetic monopole as an external particle, the parity-odd electromagnetic memory appears.