Independence and totalness of subspaces in phase space methods


الملخص بالإنكليزية

The concepts of independence and totalness of subspaces are introduced in the context of quasi-probability distributions in phase space, for quantum systems with finite-dimensional Hilbert space. It is shown that due to the non-distributivity of the lattice of subspaces, there are various levels of independence, from pairwise independence up to (full) independence. Pairwise totalness, totalness and other intermediate concepts are also introduced, which roughly express that the subspaces overlap strongly among themselves, and they cover the full Hilbert space. A duality between independence and totalness, that involves orthocomplementation (logical NOT operation), is discussed. Another approach to independence is also studied, using Rotas formalism on independent partitions of the Hilbert space. This is used to define informational independence, which is proved to be equivalent to independence. As an application, the pentagram (used in discussions on contextuality) is analyzed using these concepts.

تحميل البحث