An $O(1)$-Approximation Algorithm for Dynamic Weighted Vertex Cover with Soft Capacity


الملخص بالإنكليزية

This study considers the (soft) capacitated vertex cover problem in a dynamic setting. This problem generalizes the dynamic model of the vertex cover problem, which has been intensively studied in recent years. Given a dynamically changing vertex-weighted graph $G=(V,E)$, which allows edge insertions and edge deletions, the goal is to design a data structure that maintains an approximate minimum vertex cover while satisfying the capacity constraint of each vertex. That is, when picking a copy of a vertex $v$ in the cover, the number of $v$s incident edges covered by the copy is up to a given capacity of $v$. We extend Bhattacharya et al.s work [SODA15 and ICALP15] to obtain a deterministic primal-dual algorithm for maintaining a constant-factor approximate minimum capacitated vertex cover with $O(log n / epsilon)$ amortized update time, where $n$ is the number of vertices in the graph. The algorithm can be extended to (1) a more general model in which each edge is associated with a nonuniform and unsplittable demand, and (2) the more general capacitated set cover problem.

تحميل البحث