Electron dynamics driven by light pulse derivatives


الملخص بالإنكليزية

We demonstrate that ultrashort pulses carry the possibility for a new regime of light-matter interaction with nonadiabatic electron processes sensitive to the envelope-derivative of the light pulse. A standard single pulse with its two peaks in the derivative separated by the width of the pulse acts in this regime like a traditional double pulse. The two ensuing nonadiabatic ionization bursts have slightly different ionization amplitudes. This difference is due to redistribution of continuum electron energy during the bursts, negligible in standard photo-ionization. A time-dependent close- coupling approach based on cycle-averaged potentials in the Kramers-Henneberger reference frame permits a detailed understanding of light pulse derivative-driven electron dynamics.

تحميل البحث