Analysis of a Failed Eclipse Plasma Ejection Using EUV Observations


الملخص بالإنكليزية

The photometry of eclipse white-light (W-L) images showing a moving blob is interpreted for the first time together with observations from space with the PRoject for On Board Autonomy (PROBA-2) mission (ESA). An off-limb event seen with great details in W-L was analyzed with the SWAP imager (Sun Watcher using Active pixel system detector and image Processing) working in the EUV near 174 A. It is an elongated plasma blob structure of 25 Mm diameter moving above the E-limb with coronal loops under. Summed and co-aligned SWAP images are evaluated using a 20 hours sequence, in addition to the July 11, 2010 eclipse W-L images taken from several sites. The Atmospheric Imaging Assembly (AIA) instruments on board the Solar Dynamical Observatory (SDO) recorded the event suggesting a magnetic reconnection near a high neutral point; accordingly, we also call it a magnetic plasmoid. The measured proper motion of the blob shows a velocity up to 12 km s^-1. Electron densities of the isolated condensation (cloud or blob or plasmoid) is photometrically evaluated. The typical value is 10^8 cm^-3 at r=1.7 R, superposed on a background corona of 10^7 cm^-3 density. The mass of the cloud near its maximum brightness is found to be 1.6x10^13 gr which is typically 0.6x10^-4 of the overall mass of the corona. From the extrapolated magnetic field the cloud evolves inside a rather broad open region but decelerates, after reaching its maximum brightness. The influence of such small events for supplying material to the ubiquitous slow wind is noticed. A precise evaluation of the EUV photometric data after accurately removing the stray light, suggests an interpretation of the weak 174 A radiation of the cloud as due to resonance scattering in the Fe IX/X lines.

تحميل البحث