Understanding Ion Pairing in High Salt Concentration Electrolytes using Classical Molecular Dynamics Simulations and its Implications for Nonaqueous Li-O$_2$ Batteries


الملخص بالإنكليزية

A precise understanding of solvation is essential for rational search and design of electrolytes that can meet performance demands in Li-ion and beyond Li-ion batteries. In the context of Li-O$_2$ batteries, ion pairing is decisive in determining battery capacity via the solution mediated discharge mechanism without compromising heavily on electrolyte stability. We argue that models based on coordination numbers of the counterion in the first solvation shell are inadequate at describing the extent of ion pairing, especially at higher salt concentrations, and are often not consistent with experimental observations. In this study, we use classical molecular dynamics simulations for several salt anions (NO$_3^-$, BF$_4^-$, CF$_3$SO$_3^-$, (CF$_3$SO$_2$)$_2$N$^-$) and nonaqueous solvent (DMSO, DME, ACN, THF, DMA) combinations to improve the understanding of ion paring with the help of a new metric of ion-pairing. We proposed a metric that defines the degree of clustering of a cation by its counterions and solvent molecules on a continuous scale, the limits if which are based on a simple and intuitive condition of charge neutrality. Using these metrics, we identify the extent of ion pairing in good agreement with experimental solvation phase diagrams and further discuss its usefulness in understanding commonly employed measures of salt and solvent donicity such as the Gutmann donor number.

تحميل البحث