Photonic Crystal Cavities from Hexagonal Boron Nitride


الملخص بالإنكليزية

Development of scalable quantum photonic technologies requires on-chip integration of components such as photonic crystal cavities and waveguides with nonclassical light sources. Recently, hexagonal boron nitride (hBN) has emerged as a promising platform for nanophotonics, following reports of hyperbolic phonon-polaritons and optically stable, ultra-bright quantum emitters. However, exploitation of hBN in scalable, on-chip nanophotonic circuits, quantum information processing and cavity quantum electrodynamics (QED) experiments requires robust techniques for the fabrication of monolithic optical resonators. In this letter, we design and engineer high quality photonic crystal cavities from hBN. We employ two approaches based on a focused ion beam method and a minimally-invasive electron beam induced etching (EBIE) technique to fabricate suspended two dimensional (2D) and one dimensional (1D) cavities with quality (Q) factors in excess of 2,000. Subsequently, we show deterministic, iterative tuning of individual cavities by direct-write, single-step EBIE without significant degradation of the Q-factor. The demonstration of tunable, high Q cavities made from hBN is an unprecedented advance in nanophotonics based on van der Waals materials. Our results and hBN processing methods open up promising new avenues for solid-state systems with applications in integrated quantum photonics, polaritonics and cavity QED experiments.

تحميل البحث