Noisy Feedback and Loss Unlimited Private Communication


الملخص بالإنكليزية

Alice is transmitting a private message to Bob across a bosonic wiretap channel with the help of a public feedback channel to which all parties, including the fully-quantum equipped Eve, have completely noiseless access. We find that by altering the model such that Eves copy of the initial round of feedback is corrupted by an iota of noise, one step towards physical relevance, the capacity can be increased dramatically. It is known that the private capacity with respect to the original model for a pure-loss bosonic channel is at most $- log(1-eta)$ bits per mode, where $eta$ is the transmissivity, in the limit of infinite input photon number. This is a very pessimistic result as there is a finite rate limit even with an arbitrarily large number of input photons. We refer to this as a loss limited rate. However, in our altered model we find that we can achieve a rate of $(1/2) log(1 + 4 eta N_S)$ bits per mode, where $N_S$ is the input photon number. This rate diverges with $N_S$, in sharp contrast to the result for the original model. This suggests that physical considerations behind the eavesdropping model should be taken more seriously, as they can create strong dependencies of the achievable rates on the model. For by a seemingly inconsequential weakening of Eve, we obtain a loss-unlimited rate. Our protocol also works verbatim for arbitrary i.i.d. noise (not even necessarily Gaussian) injected by Eve in every round, and even if Eve is given access to copies of the initial transmission and noise. The error probability of the protocol decays super-exponentially with the blocklength.

تحميل البحث