Social relationships characterize the interactions that occur within social species and may have an important impact on collective animal motion. Here, we consider a variation of the standard Vicsek model for collective motion in which interactions are mediated by an empirically motivated scale-free topology that represents a heterogeneous pattern of social contacts. We observe that the degree of order of the model is strongly affected by network heterogeneity: more heterogeneous networks show a more resilient ordered state; while less heterogeneity leads to a more fragile ordered state that can be destroyed by sufficient external noise. Our results challenge the previously accepted equivalence between the {em static} Vicsek model and the equilibrium XY model on the network of connections, and point towards a possible equivalence with models exhibiting a different symmetry.