Composing Method for the Two-dimensional Scanning Spectra Observed by the New Vacuum Solar Telescope


الملخص بالإنكليزية

In this paper we illustrate the technique used by the New Vacuum Solar Telescope to increase the spatial resolution of two-dimensional (2D) solar spectroscopy observation involving two dimensions of space and one of wavelength. Without an image stabilizer at the NVST, a large scale wobble motion is present during the spatial scanning, whose instantaneous amplitude could reach up to 1.3 due to the earths atmosphere and the precision of the telescope guiding system, and seriously decreases the spatial resolution of 2D spatial maps composed with the scanning spectra. We make the following effort to resolve this problem: the imaging system (e.g., the TiO-band) is used to record and detect the displacement vectors of solar image motion during the raster scan, in both the slit and scanning directions. The spectral data (e.g., the Ha line) which are originally obtained in time sequence are corrected and re-arranged in space according to those displacement vectors. Raster scans are carried out in several active regions with different seeing conditions (two rasters are illustrated in this paper). Given a certain spatial sample and temporal resolution, the spatial resolution of the composed 2D map could be close to that of the slit-jaw image. The resulting quality after correction is quantitatively evaluated with two methods. Two-dimensional physical quantity, such as the line-of-sight velocities in multi-layer of the solar atmosphere, is also inferred demonstrating the effect of this technique.

تحميل البحث