The ground state of $lambda$-(BEDT-TTF)$_2$GaCl$_4$, which has the same structure as the organic superconductor $lambda$-(BETS)$_2$GaCl$_4$, was investigated by magnetic susceptibility and $^{13}$C NMR measurements. The temperature dependence of the magnetic susceptibility revealed an antiferromagnetic (AF) correlation with $J/k_{rm B} simeq$ 98 K. NMR spectrum splitting and the divergence of $1/T_1$ were observed at approximately 13 K, which is associated with the AF transition. We found that the AF structure is commensurate according to discrete NMR peak splitting, suggesting that the ground state of $lambda$-(BEDT-TTF)$_2$GaCl$_4$ is an AF dimer-Mott insulating state. Our results suggest that the superconducting phase of $lambda$-type salts would be located near the AF insulating phase.