The biotransport of the intravascular nanoparticle (NP) is influenced by both the complex cellular flow environment and the NP characteristics. Being able to computationally simulate such intricate transport phenomenon with high efficiency is of far-reaching significance to the development of nanotherapeutics, yet challenging due to large length-scale discrepancies between NP and red blood cell (RBC) as well as the complexity of NP dynamics. Recently, a lattice-Boltzmann (LB) based multiscale simulation method has been developed to capture both NP scale and cellular level transport phenomenon at high computational efficiency. The basic components of this method include the LB treatment for the fluid phase, a spectrin-link method for RBCs, and a Langevin dynamics (LD) approach to capturing the motion of the suspended NPs. Comprehensive two-way coupling schemes are established to capture accurate interactions between each component. The accuracy and robustness of the LB-LD coupling method are demonstrated through the relaxation of a single NP with initial momentum and self-diffusion of NPs. This approach is then applied to study the migration of NPs in a capillary vessel under physiological conditions. It is shown that Brownian motion is most significant for the NP distribution in capillary vessels. For 1~100 nm particles, the Brownian diffusion is the dominant radial diffusive mechanism compared to the RBC-enhanced diffusion. For ~500 nm particles, the Brownian diffusion and RBC-enhanced diffusion are comparable drivers for the particle radial diffusion process.