Spectral properties of 2D Pauli operators with almost periodic electromagnetic fields


الملخص بالإنكليزية

We consider a 2D Pauli operator with almost periodic field $b$ and electric potential $V$. First, we study the ergodic properties of $H$ and show, in particular, that its discrete spectrum is empty if there exists an almost periodic magnetic potential which generates the magnetic field $b - b_{0}$, $b_{0}$ being the mean value of $b$. Next, we assume that $V = 0$, and investigate the zero modes of $H$. As expected, if $b_{0} eq 0$, then generically $operatorname{dim} operatorname{Ker} H = infty$. If $b_{0} = 0$, then for each $m in {mathbb N} cup { infty }$, we construct almost periodic $b$ such that $operatorname{dim} operatorname{Ker} H = m$. This construction depends strongly on results concerning the asymptotic behavior of Dirichlet series, also obtained in the present article.

تحميل البحث