Bright polariton OLEDs operating in the ultra-strong coupling regime


الملخص بالإنكليزية

The generation and control of exotic phenomena in organic electroluminescent microcavities, such as polariton lasing and non-linear optical effects, operating in strong and ultra-strong coupling regimes, is still a great challenge. The main obstacles originate from the small number of molecular classes investigated as well as from the absence of an efficient strategy aiming at the maximization of polariton states population. Here we report on bright polariton organic light emitting diodes made of a coumarin fluorescent dye emitting layer, working in the ultra-strong coupling regime up to a coupling strength of 33%. Owing to a high radiative decay emission, a large Stokes shift and a fine cavity-exciton tuning, the radiative pumping mechanism of polariton states has been fully optimized, leading a large portion (25%) of the emissive electrically pumped excitons to be converted in polariton emission. The resulting polariton OLEDs showed electro-optical performances up to 0.2% of external quantum efficiency and 700 cd/m2 of luminance, corresponding to the highest values reported so far for this class of devices. Our work gives clear indications for an effective exploitation of organic polariton dynamics towards the development of novel quantum optoelectronic devices.

تحميل البحث