New families of Hadamard matrices with maximum excess


الملخص بالإنكليزية

In this paper, we find regular or biregular Hadamard matrices with maximum excess by negating some rows and columns of known Hadamard matrices obtained from quadratic residues of finite fields. In particular, we show that if either $4m^2+4m+3$ or $2m^2+2m+1$ is a prime power, then there exists a biregular Hadamard matrix of order $n=4(m^2+m+1)$ with maximum excess. Furthermore, we give a sufficient condition for Hadamard matrices obtained from quadratic residues being transformed to be regular in terms of four-class translation association schemes on finite fields.

تحميل البحث