Blind quantum computation for quantum Fourier transform on Bell states


الملخص بالإنكليزية

It is called blind quantum computation(BQC) that a client who has limited quantum technologies can delegate her quantum computing to a server who has fully-advanced quantum computers. But the privacy of the clients quantum inputs, algorithms and outputs is still a challenge. To realize a secure BQC, we mainly study how to hide quantum fourier transform (QFT) performed on Bell states. In this paper, three cases are considered as follows. For the first case, we design primary BQC protocols of QFT performed on qubits 12 of belonging to ${|phi^pmrangle_{12},$ $|psi^pmrangle_{12}}$ with relevant circuits. To strengthen security, we construct enhanced BQC protocols of QFT performed on qubits 13 of any two Bell states $|xirangle_{12}otimes|thetarangle_{34}$ with relevant quantum circuits. Featured the property of stronger security, we give generalized BQC protocols of QFT performed on qubits 13 and 24 of any two Bell states with relevant quantum circuits respectively. At last, we analyze and prove the blindness and correctness.

تحميل البحث