Disordered $lambdavarphi^{4}+rhovarphi^{6}$ Landau-Ginzburg model


الملخص بالإنكليزية

We discuss a disordered $lambdavarphi^{4}+rhovarphi^{6}$ Landau-Ginzburg model defined in a d-dimensional space. First we adopt the standard procedure of averaging the disorder dependent free energy of the model. The dominant contribution to this quantity is represented by a series of the replica partition functions of the system. Next, using the replica symmetry ansatz in the saddle-point equations, we prove that the average free energy represents a system with multiple ground states with different order parameters. For low temperatures we show the presence of metastable equilibrium states for some replica fields for a range of values of the physical parameters. Finally, going beyond the mean-field approximation, the one-loop renormalization of this model is performed, in the leading order replica partition function.

تحميل البحث