A particular case of Bergeron-Venkateshs conjecture predicts that torsion classes in the cohomology of Shimura varieties are rather rare. According to this and for Kottwitz-Harris-Taylor type of Shimura varieties, we first associate to each such torsion class an infinity of irreducible automorphic representations in characteristic zero, which are pairwise non isomorphic and weakly congruent. Then, using completed cohomology, we construct torsion classes in regular weight and then deduce explicit examples of such automorphic congruences.