What can we learn on supernova neutrino spectra with water Cherenkov detectors?


الملخص بالإنكليزية

We investigate the precision with which the supernova neutrino spectra can be reconstructed in water Cherenkov detectors, in particular the large scale Hyper-Kamiokande and Super-Kamiokande. To this aim, we consider quasi-thermal neutrino spectra modified by the Mikheev-Smirnov-Wolfenstein effect for the case of normal ordering. We perform three 9 degrees of freedom likelihood analyses including first inverse-beta decay only, then the combination of inverse beta decay and elastic scattering on electrons and finally a third analysis that also includes neutral scattering neutrino-oxygen events. A tenth parameter is added in the analyses to account for the theoretical uncertainty on the neutral current neutrino-oxygen cross section. By assuming a 100% efficiency in Hyper-Kamiokande, we show that one can reconstruct the electron antineutrino average energy and pinching parameter with an accuracy of $sim2%$ and $sim7%$ percent respectively, while the antineutrino integrated luminosity can be pinned down at $sim3%$ percent level. As for the muon and tau neutrinos, the average energy and the integrated luminosity can be measured with $sim7%$ precision. These results represent a significant improvement with respect Super-Kamiokande, particularly for the pinching parameter defining the electron antineutrino spectra. As for electron neutrinos, the determination of the emission parameters requires the addition of supplementary detection channels.

تحميل البحث