Unruh effect and Schwinger pair creation under extreme acceleration by ultraintense lasers


الملخص بالإنكليزية

A detector undergoing a huge acceleration measures a thermal distribution with the Unruh temperature out of the Minkowski vacuum. Though such huge accelerations occur naturally in astrophysics and gravity, one may design untraintense laser facility to detect the Unruh effect and simulate laboratory astrophysics. We derive the QED vacuum polarization and the vacuum persistence amplitude as well as the Schwinger pair creation in an accelerating frame when a constant electric field exists in the Minkowski spacetime. We advance a thermal interpretation of Schwinger pair creation in the Rindler space.

تحميل البحث