Ultrashort laser pulse driven currents in conductors: physical mechanisms and time scales


الملخص بالإنكليزية

The response of conduction band electrons to a local, pulse-like external excitation is investigated. The charge density wave packets that emerge as a consequence of the excitation leave the interaction region with a speed close to the initial states band velocity, but there are also oscillations with essentially the same frequency as that of the laser field. As a good estimation, the excitation can also be considered as a localized, time-dependent ponderomotive potential, leading to slowly varying current oscillations. The role of all these effects are investigated for different electron energies, carrier frequencies and sizes of the interaction area.

تحميل البحث